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Our research focus: Converting sets of phenotypes
to actionable clinical information.
The interpretation of patients' Electronic Health Records
(EHR) is challenging, especially for patients that have
dynamic and diverse sets of clinical features.
The Human Phenotype Ontology (HPO) is a standardized
dictionary of phenotypic concepts and their
relationships. The HPO can be represented as a Directed
Acyclic Graph (DAG) with phenotypes represented as nodes
and connections between phenotypes represented as
edges.
Natural language processing (NLP) models can be used
to map the EHR to sets of phenotypes in the HPO, making
them amenable to further downstream tasks (e.g., prediction
and classification tasks). To date many of these tasks are
conducted using either:
Manual analysis:
§ can reduce the quality of in-depth analysis.
§ places a burden on a clinicians' time.
Mechanistic methods (e.g. Resnik & information coefficient):
§ are based on guess-and-check approaches.
§ require a large amount of computation, even with minor

changes to patients’ EHRs.
Deep phenotyping methods:
Most of these studies identify phenotypes based on the
inheritance and structural relationships of nodes in the
HPO by using graph searching algorithms. The information
available in the patient corpus and the frequency of
phenotypes do not play any role in these analyses.
Our method (Phenotype Embedding):
§Using recent advancements in graph representations, we 

provide vector embedding of phenotypes in a latent space.
§We employ the occurrence frequency of phenotypes from 

a large patient corpus to shape the embedding space.
§This method provides a fast and robust setting for 

analyses on phenotypes. 
§We believe these phenotype representations can be used 

to predict a variety of important patient metrics.
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§ Using an embedding algorithm, we transform phenotypes into a n-
dimensional vector space, where phenotypes that are close to each
other in the HPO graph are closer in the embedding space.

§ We use phenotype occurrence frequency to capture the
relationships, moving rare terms closer to more common parent terms.

§ This technique helps us translate patients EHR records to a vector-
based representation that is ready for use in various downstream
tasks.

§ We believe that applying this method to common predictive problems
will improve and accelerate important research and clinical processes
in pediatrics health care.

§ In the future, we plan on employing the co-occurrence frequency
of phenotypes in patient notes to augment the edges in the HPO DAG,
allowing nodes that co-occur but are far apart to be directly connected.
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Figure 1: Schematic of the embedding model. Input: the HPO graph, Output: the 
embedding space for all phenotypes.
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Nearest phenotypes to 
Seizure 

Cosine 
distance

Abnormal nervous system 
physiology

0.185

Abnormality of movement 0.250
Reduced 
consciousness/confusion

0.313

Gait disturbance 0.342
Motor seizure 0.348
Abnormality of higher 
mental function

0.359

Behavioral abnormality 0.363
Autistic behavior 0.395
Upper motor neuron 
dysfunction

0.397

Involuntary movements 0.406

Figure 2: We used PCA to visualize the original (128D) embedding space. a) A 3D 
representation phenotypes in the space. b) Closest phenotypes to Seizure in the 3D space.

Table 1: List of ten closest phenotypes to a selected phenotype in the original space, 128D

Figure 5: Schematics of the benefits of using graph representation learning

Figure 6: Application of phenotype embeddings for patient representation
Figure 4: A comparison of the effects of 
incorporating phenotypes frequencies in 
the embedding space. Phenotypes under 
Seizure in the HPO DAG (i.e.,  
the children nodes) are marked in black. 
Many of the rare phenotypes from this 
category move closer to Seizure using the 
frequency-based approach vs. the 
standard Node2Vec algorithm. Conversely, 
phenotypes such as Maternal seizure, 
which belong to a different sub-graph (see 
Figure 1) and therefore have a weak 
connection to Seizure, move farther away.
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Nearest phenotypes to 
Neurodevelopmental abnormality

Cosine 
distance

Neurodevelopmental delay 0.319
Abnormality of higher mental 
function

0.415

Delayed speech and language 
development

0.422

Abnormal nervous system 
physiology

0.428

Reduced consciousness/confusion 0.454

Abnormality of the nervous system 0.464

Global developmental delay 0.494
Behavioral abnormality 0.508
Seizure 0.514
Headache 0.518

a) Selected phenotype: Seizure b) Selected phenotype: Neurodevelopmental abnormality
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HP:0100622
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Abnormal nervous system 
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Data:
1. We have access to over 1.5 million patients' EHR as part of the 

Arcus Data Repository [1].
2. Arcus provides phenotype annotations extracted by the cTAKES

[2] NLP system from patients’ EHR notes.

Method: 
Building upon the Node2Vec algorithm [3,4], we create a latent 
space where phenotypes that are related in the HPO get closer in 
the embedding space. In doing so, we
1. compute probabilities of random walks – by incorporating 

weighted edges based on the frequency of the nodes.
2. find 𝑟 biased random walks of length 𝑙 starting from each 

graph node where we tune breadth- and depth- traversal.
3. put nodes that are seen in the same walk closer in the 

vector space, optimizing the node2vec objective function 
using the Stochastic Gradient Descent algorithm. Focal aware autonomic
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