Integrating 3D Genomic and Epigenomic Data to Enhance Target Gene Discovery and Drug Repurposing in Transcriptome-Wide Association Study

Chachrit Khunsriraksakul^{1,2}, Daniel McGuire³, Renan Sauteraud³, Fang Chen³, Lina Yang³, Rosa Kim², Jordan Hughey¹, Scott Eckert¹, James Weissenkampen², Laura Carrel⁴, Bibo Jiang², Dajiang Liu^{2,3}

¹Department of Bioinformatics and Genomics, Pennsylvania State University College of Medicine, Hershey, PA; ²Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA; ³Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA; ⁴Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA

BACKGROUND

Transcriptome-wide association studies (TWAS) is an emerging gene-based association method.

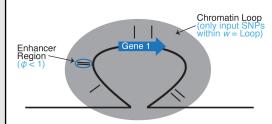
- Gene expression prediction models are created from reference dataset with matched genotypes and expression data.
- Models are then applied to GWAS summary statistics to identify trait-associated genes.

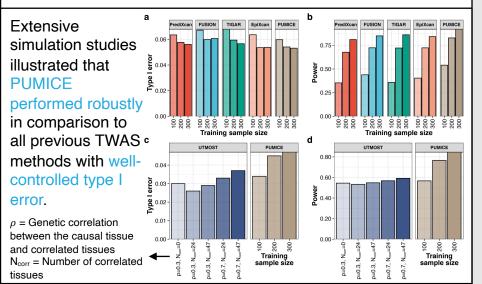
Gene expression prediction models are usually created without the integration of functional annotation.

 EpiXcan is the first TWAS method that integrates epigenomic annotations into the model building step; however, the framework is computationally expensive and not flexible.

OBJECTIVE

Epigenome


Use epigenomic and 3D genomic data to improve the accuracy of gene expression prediction models.


MODEL DEVELOPMENT and SIMULATIONS

PUMICE utilizes multistep elastic net framework to tune for:

- Best penalty factor (Ø) according to the epigenomic data
- Best window size (w) according to the 3D-genomic data

We tuned model across $\emptyset \in [0,1]$ and $w \in \{\pm 250 \text{kb}, \pm 1 \text{Mb}, \text{Loop}, \text{Domain}, \text{TAD}, \text{pcHiC}\}$. Best model was selected based on the lowest mean cross-validated error.

EXTENSION and APPLICATION

PUMICE+ combines single-tissue and multi-tissue TWAS methods by Cauchy combination test.

Applying TWAS models to 79 complex traits, PUMICE+ identified

- Highest number of novel gene counts.
- Largest average chi-square value at MAGMA-prioritized genes.
- Putative target genes that are most consistent with target genes of approved drugs.
- * PUMICE is the second-best method.

CONCLUSION

Integration of publicly available epigenomic and 3D genomic data can further improve the power of TWAS method and associated downstream analyses.

Future Directions:

- Integrate transcription factor annotations
- Enhance PUMICE framework to train model using only eQTL data

cxk502@psu.edu