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Determining how chromosomes are positioned and folded within the nucleus has greatly enhanced our
understanding of gene regulation. Diverse imaging- and sequencing-based technologies have revealed the
existence of chromosome territories and compartments, topologically associating domains (TADs) and promoter-
enhancer contacts. These hierarchical levels of genome organization are cell-type specific and important for
gene regulation mechanisms and specialized cell functions. To map 3D chromatin topology in specific murine
brain cell types without tissue disruption, we applied Genome Architecture Mapping (GAM), a ligation-free
technology that maps genome topology by sequencing the DNA content of ultrathin (~220 nm) nuclear
cryosections.
We developed MELTRON, a statistical framework for detection of chromatin ‘melting’ events characterized by a
decrease in chromatin contact densities over genomic regions of interest. We applied MELTRON to compare
interaction matrices of embryonic stem cells with dopaminergic neurons, pyramidal glutamatergic neurons or
oligodendrocytes, and we discover cell-type specific sets of genes which display extensive chromatin
decondensationor ‘melting’. Microscopy and polymer modeling confirm the spatial expansion, or
decondensation, of ‘melted’ genes. Through integration with scRNA-seq and scATAC-seq data, we uncover that
melting genes tend to be highly transcribed and/or have high chromatin accessibility. Additionally, we find
that many of the genes with particularly high melting scores possess intricate RNA processing dynamics and
are associated with neurological disorders. Thus, understanding how gene melting relates with regulation will
become important to understand mechanisms of neurological diseases.
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1. Genome architecture mapping in the mouse brain

2. GAM captures cell type specific topologies
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i. Isolation of tissue of interest
and cryopreservation

ii. Ultrathin cryosectioning

iv. Laser microdissection iv. DNA extraction and sequencing
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3. MELTRON detects cell-type specific chromatin decondensation

4. Melting is associated with high expression and large-scale
3D chromatin reorganisation in neurons
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Meltron is a statistical framework for detection of differences in contact density at genomic regions of interest
Efficient data structures and multi-core processing allow calculation of melting scores in short time
~150 cell-type specific genes are melted in each of the brain cell-types
Melting genes in brain cells tend to be highly transcribed and spatially decompacted
Melting also occurs in in-vitro differentiated dopaminergic neurons where it is also associated with elevated transcription
What effects does melting have on transcription dynamics and genome stability?


