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Rationale

> Trio-base Whole Exome Sequencing (WES) data are used to
diagnose de novo variants confidently.

» Some genetic etiologies have a clear phenotypic association,
but many demonstrate with a wide spectrum of phenotypic
heterogeneity.

» Correlating genetic findings with clinical feature at scale
remains a hurdle

» We use computational phenotypes in individuals with WES
data to identify relevant phenotypic similarities.

Methods

» Trio WES data in 9,190 individuals were analyzed for de

novo variants. The most frequent genes are:
»> BPTF (n=19), KCNQ2 (n=17), STXBP1 (n=17),
MECP2 (n=16), SCNIA (n=15), PACS1 (n=14).

» Human Phenotype Ontology (HPO) terms was used to
annotate phenotypic data in 14,270 individuals

» The most common HPO terms were Global developmental

delay (HP:0001263, 27%), Delayed speech and language
development (HP:0000750, 16%).

» Resnik-mod similarity algorithm was primarily used for this
study. We also compared performance with other similarity
algorithms.

Results

» We analyzed 103,523 HPO terms in 14,270 individuals,
including 4,357 unique terms.

» Of the 280 genes with two or more de novo variants, 23
genes had a phenotypic similarity higher than expected:
»> AP2M1 (n=4; p < 0.0001), DNMI1 (n=6; p <
0.0001), GABRB3 (n=6; p < 0.0001), SCN1A (n=15;
p < 0.0001), PACSI (n=14; p = 0.0001), and
STXBPI (n=17; p = 0.0006 )

» Decomposition of phenotypic similarity revealed gene-specific

signatures including:
» SCNIA - Bilalteral tonic-clonic seizure (HP:0002069, p

< 0.001), Focal clonic seizure (HP:0002266, p < 0.001).
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Figure 1. Comparing p-value due to two different phenotypic similarity
algorithms. The dotted blue line signifies a score of p=0.05. X-axis
represents the Cube algorithm and Y-axis represents Resnik-mod
algorithm.
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Figure 2. Frequency of HPO terms associated with AP2MI (n=4).

Color of points indicate significance level of each HPO term with
respect to the gene. Red indicates significance of p <0.05.

Conclusion

» Computational phenotyping can be used to generate
statistical evidence for disease causation using similarity
algorithms.

» HPO driven phenotypic analysis picks up distinct genetic
profiles, reflecting the heterogeneity of phenotypic data.

» Phenotypic similarity algorithms can be used to detect
disease entities by identifying individuals with overlapping
phenotypic features with same rare genetic etiology.

» This approach can aid in gene discovery and gene

prediction.



