
3. Case Study Results
     ScRNA-seq data was obtained from a recent study published on cell-type identification of 
nasal swabs from a cohort of COVID-19 patients [3] consisting of 32,588 cells and 18 detected 
clusters.. To examine our proposed method we used  a set of PCs to detect clusters and re-
group the barcodes according the steps in section 2 (Figure 1).  In the presented results we 
used 5 PCs (PCs 1-5) for 32,588 cells. A total of 32 clusters were detected as opposed to 18 
clusters. By design, the number of clusters is determined by the algorithm and is not explicitly 
provided by users.


1. Introduction
Single-cell RNA-seq (scRNA-seq) data analysis 

treats clustering as a key step towards studying cell 
type composition, differential expression profiling, 
marker gene selection, differentiation analysis and 
deconvolution [1].  Clustering applications typically 
used for the analysis of scRNA-seq data can inherit 
intrinsic limitations including undesirable computational 
complexity, inaccurate nonlinear behavior estimation, 
noise reduction and ambiguous definition of hard 
versus soft clusters [2].

We developed a probabi l ist ic framework to 
systematically address some of these issues 
associated with conventional scRNA-seq clustering 
methods. 
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2. Method
The proposed method takes the following steps to 

cluster the data: A) raw expression data is fed into a 
feature extraction pipeline  and principal components 
(PCs) are obtained. B) Through the kernel and copula 
methods, marginal and joint probability densities are 
estimated, respectively, according the following 
equations for PCs as input variables: 
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Figure 1 Example sc-RNAseq data clustering. A) Pairwise combination of first principal components 
were used as input. B) Joint probability densities were empirically estimated using copulas and kernel 
densities. C) Densities were heterogenized to make the local maxima detectable . D) Output of C was 

processed by segmenting the regions distributed around local  peak densities and segment indices were 
assigned to 32,588 cells. A  sequence of indices for a combination of  6 PCs were regrouped to assign each 

cell with  A cluster number 1-32. E) UMAP and F)  tSNE visualizations of clusters in color spectra.

For every multivariate joint probability distribution there 
is a copula function  such thatC:[0, 1]𝑑 → [0, 1]
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Using C we can estimate the joint density as:

Here  and  are computed empirically. For  we 
utilize kernel density estimation with bandwidth h:

𝐶̂ 𝐹̂𝑋 𝐹̂𝑋

C) Pairwise density of PCi and PCj, f(PCi, PCj) is
heterogenized by log transformation. D) Regions of the
heterogenized density distributed around local optima
are segmented (watershed segmentation). E)
Resulting clusters are assigned to each data-point
index (barcodes). F) This process is repeated for
different combinations of PCs. G) Barcodes are
grouped based on a sequence of detected lower-
dimensional clusters and visualized in a reduced
dimension space such as UMAP.

4. Discussion
    The proposed method differs from common scRNA-
data clustering methods in that it defines the clusters 
as regions of feature space surrounding the local peak 
densities. To this end, the method uses an empirical 
copula to capture nonlinear relationships among the 
input variables. Overall, the method is fast and does 
not require pre-known number for clusters, instead 
cluster number is controlled by the number of input 
variables (here PCs). We are developing algorithms to 
measure the accuracy of the method as opposed to 
the ground truth. Correlation between the cluster 
labels and the labels provided in the reference study 
indicates maximum of 0.619.  An informed cluster 
merging scheme is sought to enhance the method 
accuracy.
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5. Future Directions
We aim to combine different modules of this method 

as a standalone pipeline in R and Python also as an 
extension of the Scedar package published previously 
by Zhang et al [4]. Of our particular interest to 
automate and accelerate the performance by adopting 
optimized segmentation routines from available 
software packages (e.g. watershed function by 
Mathworks).      

0 5 10 15 20
Number of PCs

0

5

10

15

20

25

30

35

Ex
ec

ut
io

n 
T

im
e 

(s
)

Figure 2:  Convergence time  as a function of number of PCs PC
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